Iterative learning controller synthesis using FIR models for batch processes

نویسنده

  • Junghui Chen
چکیده

−Adaptive iterative learning control based on the measured input-output data is proposed to solve the traditional iterative learning control problem in the batch process. It produces a control law with self-tuning capability by combining a batch-to-batch model estimation procedure with the control design technique. To build the unknown batch operation system, the finite impulse response (FIR) model with the lifted system is constructed for easy construction of a recursive least squares algorithm. It can identify the pattern of the current operation batch. The proposed model reference control method is applied to feedback control of the lifted system. It finds an appropriate control input so that the desired performance of the batch output can track the prescribed finite-time trajectory by iterative trials. Furthermore, on-line tracking control is developed to explore the possible adjustments of the future input trajectories within a batch. This can remove the disturbances in the current batch rather than the next batch trial and keep the product specifications consistent at the end of each batch. To validate the theoretical findings of the proposed strategies, two simulation problems are investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven Based Integrated Learning Controller Design for Batch Processes

The challenge of optimization control of batch processes is how to combine both discrete-time (batch-axis) information and continuous-time (time-axis) information into an integrated frame when designing optimal controller. By using data-driven technology, a novel integrated learning control system is proposed in this paper. Firstly, an iterative learning controller (ILC) is designed along the d...

متن کامل

Application of Iterative Nonlinear Model Predictive Control to a Batch Pilot Reactor

The aim of this article is to present the Iterative Model Predictive Controller, inmpc, as a good candidate to control chemical batch reactors. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (mpc) with the ...

متن کامل

Iterative learning control for the systematic design of supersaturation controlled batch cooling crystallisation processes

The paper presents an approach to improve the product quality from batch-to-batch by exploiting the repetitive nature of batch processes to update the operating trajectories using process knowledge obtained from previous runs. The data based methodology is focused on using the linear time varying (LTV) perturbation model in an iterative learning control (ILC) framework to provide a convergent b...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

Performance Assessment Measures of Batch Processes for Iterative Learning Control

A new method is proposed for the assessment of the batch control system when the iterative learning control is applied. Unlike the continuous process, the performance assessment of the batch process requires particular attention to both disturbance changes and setpoint changes. Because of the intrinsically dynamic operations and the nonlinear behavior of batch processes, the conventional approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010